فیلترها/جستجو در نتایج    

فیلترها

سال

بانک‌ها




گروه تخصصی










متن کامل


اطلاعات دوره: 
  • سال: 

    2004
  • دوره: 

    11
تعامل: 
  • بازدید: 

    169
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

MUCH PROGRESS HAS RECENTLY BEEN MADE IN brain computer interface. DIFFERENT APPROACHES HAVE BEEN INTRODUCED TO REALIZE THIS interface BETWEEN computer AND PATIENT. WE CAN SEE SUCH INSTRUMENTS AVAILABLE IN FOREIGN TRADING CENTERS WHICH ARE USED BY A FEW PATIENTS BECAUSE OF THEIR HIGH EXPENSE. CONVENTIONAL SIGNALS USED FOR PROCESSING DURING THE brain computer interface ARE ERS/ERD, SIGNALS, MU RHYTHM AND ERP. AMONG THESE SIGNALS, ERP HAS BEEN PRECEDE TO ACHIEVE THIS interface, IN THIS PAPER THE PROCEDURE IS STARTED BY VISUAL STIMULATION USING A TYPICAL QUADRATIC CROSS, RECORDING AND PROCESSING THE EEG SIGNAL FROM THE PZ, CZ, FZ CHANNELS SIMULTANEOUSLY WITH EOG CHANNELS FOR ARTIFACT OMITTING. IN THIS CASE, AN ERP SIGNAL OCCURS WITH THE PATIENT’S CHOICE WHICH IS RECOGNIZED BY THE PROCESS INTRODUCED IN THIS METHOD. THE ADVANTAGES OF THIS METHOD ARE HIGH PROCESSING SPEED AND THAT THE PATIENT NEED NOT TO BE TRAINED, BUT MANY TRAINING SESSIONS ARE (A FEW MONTHS) INCREDIBLE IN OTHER METHODS. SEVERAL METHODS HAVE BEEN INTRODUCED FOR RECOGNIZING THE PROCESSING METHOD MENTIONED HERE, IS A COMBINATION OF THE “PEAK-PICKING” METHOD, CORRELATION ,”MAXIMUM LIKELIHOOD METHOD FOR ESTIMATING THE AMPLITUDE AND LATENCIES OF EVOKED POTENTIALS” AND FINALLY “THE METHOD OF ERP COGNITIVE ELEMENTS RECOGNITION IN EEG USING WAVELET COEFFICIENTS”. THIS METHOD WAS TESTED ON TWO PERSONS (25 AND 26 YEARS OLD MAN). THE EFFICIENCY WAS 78% IN TARGET STIMULATION AND 85% IN NO TARGET STIMULATION, SIMILARLY THESE PERCENTS WERE 76% AND 83% FOR THE OTHER. THESE EFFICIENCIES ARE SOMEHOW NOTICEABLE THAT IS HOPED TO BE IMPROVED.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 169

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0
نویسندگان: 

MOHAMMADI EHSAN | Ghaderi Daneshmand Parisa | Moosavi Khorzooghi Seyyed Mohammad Sadegh

اطلاعات دوره: 
  • سال: 

    2022
  • دوره: 

    12
  • شماره: 

    1
  • صفحات: 

    40-47
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    67
  • دانلود: 

    0
چکیده: 

Background: Advances in the medical applications of brain-computer interface, like the motor imagery systems, are highly contributed to making the disabled live better. One of the challenges with such systems is to achieve high classification accuracy. Methods: A highly accurate classification algorithm with low computational complexity is proposed here to classify different motor imageries and execution tasks. An experimental study is performed on two electroencephalography datasets (Iranian brain-computer interface competition [iBCIC] dataset and the world BCI Competition IV dataset 2a) to validate the effectiveness of the proposed method. For lower complexity, the common spatial pattern is applied to decrease the 64 channel signal to four components, in addition to increase the class separability. From these components, first, some features are extracted in the time and time-frequency domains, and next, the best linear combination of these is selected by adopting the stepwise linear discriminant analysis (LDA) method, which are then applied in training and testing the classifiers including LDA, random forest, support vector machine, and K nearest neighbors. The classification strategy is of majority voting among the results of the binary classifiers. Results: The experimental results indicate that the proposed algorithm accuracy is much higher than that of the winner of the first iBCIC. As to dataset 2a of the world BCI competition IV, the obtained results for subjects 6 and 9 outperform their counterparts. Moreover, this algorithm yields a mean kappa value of 0. 53, which is higher than that of the second winner of the competition. Conclusion: The results indicate that this method is able to classify motor imagery and execution tasks in both effective and automatic manners.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 67

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

اطلاعات دوره: 
  • سال: 

    2019
  • دوره: 

    27
  • شماره: 

    2
  • صفحات: 

    152-161
تعامل: 
  • استنادات: 

    1
  • بازدید: 

    71
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 71

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
اطلاعات دوره: 
  • سال: 

    2020
  • دوره: 

    10
  • شماره: 

    3
  • صفحات: 

    208-216
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    152
  • دانلود: 

    0
چکیده: 

This article summarizes the first and second Iranian braincomputer interface competitions held in 2017 and 2018 by the National brain Mapping Lab. Two 64‑ channel electroencephalography (EEG) datasets were contributed, including motor imagery as well as motor execution by three limbs. The competitors were asked to classify the type of motor imagination or execution based on EEG signals in the first competition and the type of executed motion as well as the movement onset in the second competition. Here, we provide an overview of the datasets, the tasks, the evaluation criteria, and the methods proposed by the top‑ ranked teams. We also report the results achieved with the submitted algorithms and discuss the organizational strategies for future campaigns.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 152

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نشریه: 

عصب روانشناسی

اطلاعات دوره: 
  • سال: 

    1399
  • دوره: 

    6
  • شماره: 

    1 (پیاپی 20)
  • صفحات: 

    83-100
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    1155
  • دانلود: 

    0
چکیده: 

مقدمه هدف این پژوهش، تعیین تاثیر استفاده از سناریوهای مجازی مبتنی بر بازخورد عصبی در قالب بازی رایانه ای بر افزایش تمرکز افراد سالم است. روش طرح پژوهش حاضر تجربی است و جامعه آماری این پژوهش کلیه دانشجویان پسر دانشگاه هنر اسلامی تبریز در سال 1397 بودند. به منظور برآورد حجم نمونه از جدول کوهن استفاد شد که حجم نمونه معادل 24 نفر به شکل داوطلبانه وارد پژوهش شدند و در سه گروه تقویت منفی (اعمال جریمه)، تقویت مثبت (اعمال پاداش) و تقویت رقابتی (تاثیر بر عملکرد حریف) مورد آزمون قرار گرفتند. داده های مربوط به میزان تمرکز هر فرد و عملکرد وی در طول بازی از طریق دستگاه مغزنگار الکتریکی و ساختار چندنخی بازی ضبط و ثبت می گردید. در سناریوهای طراحی شده، از آستانه تمرکز هر فرد برای تنظیم جریان بازی استفاده می شد تا از این طریق فرآیند آموزش تمرکز، نسبت به فعالیت مغزی همان شخص تنظیم گردد. به منظور آزمودن فرضیات این پژوهش یک مطالعه کاربری صورت پذیرفت و نتایج حاصل با استفاده از روش آماری تحلیل واریانس مختلط و با استفاده از نرم افزار SPSS نسخه 21 مورد تجزیه و تحلیل قرار گرفت. یافته ها نتایج نشان داد روش تقویت رقابتی، تقویت منفی و تقویت مثبت در افزایش تمرکز موثر است. همچنین تحلیل داده های حاصل از پرسشنامه تجربه کاربری نشان داد که سناریوهای طراحی شده توانسته اند بازیکنان را در جریان بازی غوطه ور ساخته و جذابیت و تعامل لازم را به وجود آورند. نتیجه گیری استفاده از بازی رایانه ای مبتنی بر رابط مغز-رایانه و بازخورد عصبی منجر به بالا بردن بازده آموزش تمرکز می شود.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 1155

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

KELLY S. | BURKE D. | CHAZAL P. | REILLY R.

اطلاعات دوره: 
  • سال: 

    2002
  • دوره: 

    1
  • شماره: 

    -
  • صفحات: 

    307-310
تعامل: 
  • استنادات: 

    1
  • بازدید: 

    80
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 80

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
نویسندگان: 

Khakpour Maryam

اطلاعات دوره: 
  • سال: 

    2020
  • دوره: 

    7
  • شماره: 

    4
  • صفحات: 

    259-265
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    118
  • دانلود: 

    0
چکیده: 

Purpose: brain computer interface (BCI) has provided a novel way of communication that can significantly revolutionize life of people suffering from disabilities. Motor Imagery (MI) EEG BCI is one of the most promising solutions to address. The main phases of such systems include signal acquisition, pre-processing, feature extraction, classification and the intended interface. The challenging obstacles in such systems are to detect and extract efficient features that present reliability and robustness alongside promising classification accuracy. In this paper it is endeavored to present a robust method for a two-class MI BCI that results in high accuracy. Materials and Methods: For this purpose, the dataset 2b from BCI competition 2008, consisting of three channels (C3, C and Cz), was utilized. Firstly, the signals were bandpass filtered. Secondly, Common Spatial Pattern (CSP) was employed and then a number of features, including non-linear chaotic features were extracted from channels C3 and C4. After feature selection phase the number of features were reduced to 38 and 47. Finally, these features were fed into two classifiers, namely Support Vector Machine classifier (SVM) and Bagging to evaluate the performance of the system. Results: Classification accuracy and Cohen’ s Kappa coefficient of the proposed method for two MI EEG channels are 96. 40% and 0. 92, respectively. Conclusion: These results indicate the high accuracy and stability of our method in comparison with similar studies. Therefore, it can be a promising approach in two-class MI BCI systems.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 118

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    2018
  • دوره: 

    5
  • شماره: 

    1
  • صفحات: 

    35-42
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    167
  • دانلود: 

    0
چکیده: 

Background: brain responds in a short timeframe (with certain delay) after the request for doing a motor imagery task and therefore it is most likely that the individual not focus continuously on the task at entire interval of data acquisition time or even think about other things in a very short time slice. In this paper, an effective brain-computer interface (BCI) system is presented based on the optimal timeframe selection of brain signals. Methods: To prove the stated claim, various timeframes with different durations and delays selected based on a specific rule from electroencephalography (EEG) signals recorded during right/left hand motor imagery task and subsequently, feature extraction and classification are done. Results: Implementation results on the 2 well-known datasets termed Graz 2003 and Graz 2005; shows that the smallest systematically created timeframe of data acquisition interval have had the best results of classification. Using this smallest timeframe, the classification accuracy increased up to 91. 43% for Graz 2003 and 88. 96%, 83. 64% and 84. 86% for O3, S4 and X11 subjects of Graz 2005 database respectively. Conclusion: Removing the additional information in which the individual does not focus on the motor imagery task and utilizing the most distinguishing timeframe of EEG signals that correctly interpret individual intentions improves the BCI system performance.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 167

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
عنوان: 
نویسندگان: 

نشریه: 

اطلاعات دوره: 
  • سال: 

    1402
  • دوره: 

    -
  • شماره: 

    -
  • صفحات: 

    -
تعامل: 
  • استنادات: 

    1
  • بازدید: 

    19
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 19

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
عنوان: 
نویسندگان: 

اطلاعات دوره: 
  • سال: 

    1402
  • دوره: 

  • شماره: 

  • صفحات: 

    -
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    23
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 23

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
litScript
telegram sharing button
whatsapp sharing button
linkedin sharing button
twitter sharing button
email sharing button
email sharing button
email sharing button
sharethis sharing button